Choose another division
Electrical semiconductor characterization
Luminescence dating, research, dosimetry and more
Free radical measurements in life science and biomedical applications
Mono- and Multi-crystalline wafer lifetime measurement device
State of the art system for topographic electrical characterization of multicrystalline bricks in fabs with high throughput....
Production integrated high speed wafer mapping of carrier lifetime. Single wafer topograms in less than one second a wafer.
Low cost table top lifetime measurement system for characterization of a variety of different silicon samples at different...
Mono- and Multi-crystalline wafer and brick lifetime measurement device
Flexible OEM unit for lifetime measurements at a variety of different samples ranging from mono- to multicrystalline silicon...
Microwave Detected Photo Induced Current Transient Spectroscopy
The minority carrier life time is sensitive for all kinds of electrically active defects in semiconductors and is therefore...
MDP is an advanced technology with a so far unsurpassed combination of sensitivity, speed and resolution for fab and lab...
benchtop PID test for solar wafers and mini-modules
portable in field PID tester for solar modules
user friendly and advanced operating software
The PIDcon devices are designed to investigate the PID susceptibility for production monitoring of solar cells as well as tests...
Learn more about the reasons for PID and the how the susceptibility of solar cells, mini modules and encapsulation materials can...
for ultra-fast crystal orientation and rocking curve measurements
flexible diffractometer for ultra-fast Omega Scan orientation determination
for AT, SC, FC, IT cut Blanks
GNR products
three generations of X-ray engineers
in industrial production, R&D and more
discover the most convenient way of measuring orientation of single crystals
The microelectronic industry drives present global technological developments. It is one reason for the success of information...
Solar Energy is one of the key elements for the energy revolution that is currently taking place all over the world. In the last...
Research and development is the driving force for the expanding market for semiconductor products in the PV and microelectronic...
The impact of the development of the crystal growth methods on modern technology is often underestimated. We use products...
Freiberg Instruments is one of the world's fast growing, young and dynamic analytical instrumentation companies
Technical support, Training, Warranty, Consultation, Seminars, Upgrades and more
Our quality management system is an integrated process-oriented system with ISO 9001 certification.
going the extra mile
at Freiberg Instruments
Rocking curves are primarily used to study defects such as dislocation density, mosaic spread, curvature, misorientation, and inhomogeneity.
In lattice matched thin films, rocking curves can also be used to study layer thickness, superlattice period, strain and composition profile, lattice mismatch, ternary composition, and relaxation.
A rocking curve is recorded by moving the diffractometer into a reflecting position and then scanning the shape of reflection curve. The diffractometer motion sequence is similar to the Theta Scan. Additionally a special collimator, e.g. a double crystal is placed in the primary beam path to reduce the influence of the divergence and spectral width of the beam.
In a perfect crystal, the width of the rocking curve is determined by the beam geometry and the spectral width of the source. Crystal imperfections cause a broadening of the rocking curve. Usually the half-width of the measured rocking curve is compared with that calculated for a perfect crystal. With our instruments we can reach a minimum half-width of 0.002° (7 seconds).