Phys. Status Solidi A, 1-8 (2011) / DOI 10.1002/pssa.201083994

Contactless electrical defect characterization in semiconductors by microwave detected photo induced current transient spectroscopy (MD-PICTS) and microwave detected photoconductivity (MDP)

Bastian Berger¹, Nadine Schüler², Sabrina Anger², Bianca Gründig-Wendrock³, Jürgen R. Niklas², and Kay Dornich^{*2}

¹Institute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Straße, 09596 Freiberg, Germany

² Freiberg Instruments GmbH, Am St. Niclas Schacht 13, 09599 Freiberg, Germany

³SolarWorld Innovations GmbH, Berthelsdorfer Straße 111a, 09599 Freiberg, Germany

Received 5 July 2010, revised 24 August 2010, accepted 21 December 2010 Published online 00 Month 2011

Keywords defects, electrical characterization, lifetime, MDP

* Corresponding author: e-mail dornich@freiberginstruments.com, Phone: +49 3731 41 95 410, Fax: +49 3731 41 95 414

The contactless electrical characterization techniques MDP and MD-PICTS will be presented in this paper. Both methods are predestined for defect investigation in a variety of semiconductors. Due to a so far not reached sensitivity, major advantages of MDP are its high spatial resolution and its measurement speed, which allows for two dimensional inline measurements at production speed. Furthermore a versatile numerical tool for simulations of electrical properties of a semiconductor as a function of defect parameters was developed. MD-PICTS is a contactless temperature dependent measurement which allows the determination of activation energies of trap levels in the material. To demonstrate the abilities of both methods, measurements conducted at different semiconductor materials, *e.g.* silicon, silicon carbide, gallium arsenide and indium phosphide, will be presented exemplarily.

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction and motivation In photovoltaic as well as in microelectronic industry the goal is to drive costs 1 2 down by bringing yields up at the same time. To reach this 3 goal it is important to analyze the defects existing in the used semiconductor materials and their impact on the latter device 4 5 performance. Therefore the two contactless electrical characterization methods MDP and MD-PICTS for defect 6 investigation are presented and results at different semi-7 conductor materials are reviewed. 8

9 Due to the advanced microwave detection technique both methods have an advantage of sensitivity. As a 10 consequence a high measurement speed is enabled. 11 Mapping of 156 mm mc-Si wafer takes under a second [1]. 12 The wide measurable injection range from 10^{10} to 10^{17} cm⁻² 13 is another benefit. Extraction of several defect parameters 14 like the activation energy of the main recombination center 15 16 from injection dependent investigations is possible. The high sensitivity is also used for measurements on lower 1 qualitative materials or thin epitaxial layers on various 2 substrates [2]. Using the varying penetration depth of light 3 from different wavelength reveals even information about 4 interface defects. 5

As one example the influence of metal contaminations as 6 iron and chromium in silicon, diffusing into the material 7 during the melting process and reducing the efficiency of 8 solar cells and causing breakdowns of devices, is widely 9 discussed in literature [3], as well as lifetime degradation 10 caused by BO₂ [4]. MDP is a suitable tool for high resolution 11 mappings of the density of iron as well as chromium and 12 boron-oxygen complexes. Furthermore due to high sensi-13 tivity and steady state measurements iron mapping in 14 multicrystalline silicon bricks is even possible as inline 15 measurement, revealing the concentration of all electrically 16 active Fe. 17

MD-PICTS is an advancement of conventional photo 1 2 induced current transient spectroscopy (PICTS) without the necessity of contacting the samples and with a higher 3 sensitivity, opening new fields of applications on a variety of 4 5 semiconductors revealing so far not accessible defect 6 information. The technique is sensitive to defects acting as 7 carrier traps while the DLTS method gives more information 8 about the dominating recombination center in the material.

9 To achieve a better understanding of measured results a versatile numerical simulation tool was developed. It strictly 10 starts from first principles rather than relying, e.g. on SRH 11 formalism and similar approximations. Application of this 12 tool makes it possible to determine the impact of certain 13 defect properties on important material parameters as 14 minority carrier lifetime, photoconductivity or diffusion 15 16 length. Thus it is used to simulate MD-PICTS and MDP 17 measurements by taking different defects into account.

2 Experimental details

2.1 Microwave detected photoconductivity The 19 novel method MDP is well suited for both, defect 20 investigation by, e.g. injection dependent minority carrier 21 lifetime measurements, as well as mapping of wafers or even 22 bricks for inline metrology. Its major advantage is the 23 24 combination of sensitivity, resolution and speed, giving 25 MDP the flexibility for a wide variety of different applications. 26

27 The photoconductivity, which is closely related to the 28 diffusion length, is measured by microwave absorption in a resonant microwave cavity, during and after the excitation 29 with a rectangular laser pulse. Figure 1 shows the layout of 30 the MDP and MD-PICTS measurement setup. The sample is 31 situated just outside the microwave cavity and is part of the 32 measurement system. Thus, the complex dielectric constant 33 of the sample influences the resonant frequency and the loss 34 properties of the cavity. The microwave absorption by excess 35 charge carriers is detected. The sample is placed on an x-y36

Figure 1 (online color at: www.pss-a.com) Scheme of MDP measurement setup.

table, allowing theoretically every sample size and to move the sample in the x-y plane.

1

2

28

29

30

31

The high detection sensitivity enabled by this technique 3 allows for injection dependent measurement over more than 4 eight orders of magnitude depending on material under 5 investigation with unlimited duration facilitating exper-6 iments in a non-equilibrium or steady state regime. Another 7 major advantage of MDP is the ability to measure 8 photoconductivity and minority carrier lifetime simul-9 taneously. The minority carrier lifetime τ can be extracted 10 from the semi logarithmic decay and the photoconductivity 11 equals the signal height at steady state. Accordingly a variety 12 of information can be gained from each measurement, like 13 diffusion length, mobility, and even trapping dynamics. 14

2.2 Microwave detected photo induced current 15 transient spectroscopy For defect investigation on 16 semiconductors deep level transient spectroscopy (DLTS) 17 [5] and the photo induced current transient spectroscopy 18 (PICTS) [6] are established techniques for more than 19 20 years. Both differ in their excitation mechanism and 20 detection. While DLTS uses capacitive determination of 21 excite charge reversal of defects caused by voltage pulses, 22 PICTS measures the photoconductivity due to local 23 irradiation with laser light. Therefore contacting of samples 24 is required for both methods. Microwave detected PICTS is 25 an advancement of the conventional method, working 26 contactless and therefore non-destructive. 27

To measure temperature dependent MD-PICTS, the MDP equipment shown in Fig. 1 is applied, with an additional cryostat for the sample. The setup allows for spatially resolved measurements.

The method [7, 8] is based on the non-destructive 32 investigation of photoconductivity signals by microwave 33 absorption. Through pulsed light excitation provided by 34 a laser excess carriers are generated in the material. 35 According to intended investigation, wavelengths from 36 UV- until the IR-range are applied, allowing for depth 37 profiling as well as defect specific excitation with sub-band-38 gap wavelength. The light excitation causes a local rise of 39 conductivity to a level dependent on the generation and 40 recombination processes as well as on trapping and 41 reemission dynamics (time interval 1 in Fig. 2). After the 42 laser pulse is turned off the signal decreases rapidly caused 43 by the fast recombination of the generated excess carriers 44 (time interval 2). The slope of the so-called transient depends 45 on the recombination rate. This initial fast decay is followed 46 by a slower decreasing part due to the reemission of 47 trapped carriers into the associated band (time interval 3). 48 Appropriate analysis leads to the extraction of defect 49 parameters, e.g. the activation energy. After the photoexcita-50 tion, recombination and trapping of charge carriers the 51 typical photoconductivity transient based on the thermal 52 excited emission follows: 53

$$\Delta \sigma_{\text{Transient}} = q\mu \Delta n = q\mu n_{T_0} \tau_n \cdot e^{-e_{n_T}^t t}, \qquad (1)$$

18

2

Figure 2 (online color at: www.pss-a.com) Physical processes and their corresponding signal parts in MD-PICTS: (1) generation and trapping of carriers, (2) fast recombination process, (3) thermal reemission of trapped carriers [8].

 n_{T_0} corresponds to the initial density of carriers trapped by a distinct defect, $e_{n_T}^t$ symbolizes the thermal excited emission rate of this trap and *t* is the time after the termination of the photo pulse. From $e_{n_T}^t$ the activation energy of a trap can be calculated using the relation

$$e_{n_T}^t = AT^2 \cdot e^{-\frac{E_A}{kT}},\tag{2}$$

where A is a material constant.

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

For analysis the so-called two-gate technique according to DLTS is used leading to a similar defect spectra. MD-PICTS can be applied from semi-insulating samples to conductive ones. This opens characterization possibilities even on silicon which has not been possible with conventional PICTS. With the used cooling system the temperature range for MD- PICTS measurements is 80 to 500 K. Cooling down to 4 K is possible, but investigations suggest that liquid nitrogen temperature is sufficient for most defects. The filling pulse differs depending on the sample's properties between 10 and 1000 µs.

2.3 Materials and samples To show the potential of the contactless electrical characterization methods MDP and MD-PICTS, results from analysis of several semiconductor materials will be reviewed.

Shown MDP measurements for defect investigation are on passivated mc- and Cz-Si samples. For defect investigation by MDP-PICTS following samples were available: high quality 6 inch electronic grade p-doped mono-crystalline silicon with a specific resistivity around 12Ω cm; solar grade multi-crystalline p-type silicon from different parts of a brick; single-crystalline GaAs wafer from different preparations [vertical gradient freeze (VGF) and liquid encapsulated Czochralski (LEC)]; InP samples from Fedoped crystals with a resistivity between 0.01 and $2 \times 10^8 \Omega$ cm and semi-insulating 6H-SiC wafer grown by HTCVD with resistivities exceeding $2 \times 10^9 \Omega$ cm.

3 Simulations During the development and application of MDP and MD-PICTS it became clear that the obtained results are often not describable by simple defect models. The widely used SRH-Theory is only applicable if no trap influence is assumed, which is invalid especially for

low injection measurements at *e.g.*, mc-Si and MD-PICTS 1 measurements in general, where this trap influence is 2 investigated. This leads to the necessity of a new simulation 3 tool without any approximations that is able to simulate 4 injection and temperature dependent lifetimes as well as the 5 trapping dynamics. 6

The numerical tool is based on a generalized rate 7 equation system. The rate equations are used to describe the 8 time dependent change of the carrier occupation of the bands 9 (\dot{n}, \dot{p}) and defects (\dot{n}_{Tj}) . All possible transitions between the 10 defect levels in the forbidden gap and the bands of a 11 semiconductor are described by transition rates. 12

A rate equation system is used, in which the only 13 approximation is, that no direct interactions between defect 14 levels are included [9]. 15

$$\dot{n} = G_{\rm BB}^{\rm o} + G_{\rm BB}^{\rm th} + \sum_{j} (C_j - D_j) - U_{\rm BB} - U_{\rm Aug},$$
 (3)

16

$$\dot{p} = G_{\rm BB}^{\rm o} + G_{\rm BB}^{\rm th} + \sum_{j} (F_j - E_j) - U_{\rm BB} - U_{\rm Aug},$$
 (4)

19

37

$$\dot{n}_{Tj} = D_j + E_j - C_j - F_j.$$
 (5)

23 Based on the simulated time dependent carrier concen-24 trations, the photoconductivity can be calculated using the 25 mobility model of Dorkel and Leturcq [10]. The minority 26 carrier lifetime finally can be extracted from the simulated 27 transient decay of the photoconductivity after G_{opt} is set to 28 zero or can be determined from the photoconductivity value, 29 if a quasi steady state approach is used. Consequently, the 30 technique which is used to evaluate the lifetime values from 31 the simulated data is strictly based on the used measurement 32 technique and thus is correlated to the lifetime evaluation 33 technique which is experimentally applied. Therefore a very 34 good agreement between simulated values and measurement 35 results is guaranteed. More details and a demonstration of the abilities of this simulation tool can be found in Ref. [11]. 36

4 Experimental results and discussion

38 4.1 Microwave detected photoconductivity 39 Some of the most detrimental defects in silicon are traps in 40 general, iron, boron-oxygen complexes and chromium. All 41 these defects have been investigated extensively in the last 42 decades. With MDP it is possible to investigate these defects 43 with a high resolution and by injection dependent lifetime 44 measurements over a wide range of injections. Examples at 45 passivated crystalline silicon wafers are presented.

46 With the ability of MDP to measure the lifetime and 47 photoconductivity simultaneously, it is possible to estimate 48 the trap density in mc-Si by the slightly modified model of 49 Hornbeck and Haynes [12]. This model includes only one 50 trap level, so that the determined trap density is only an 51 estimation. By fitting the photoconductivity as a function of 52 the optical generation rate, the trap density and activation 53 energy can be determined. The following formula is used for

1 the fitting:

$$\Delta \sigma = \mathbf{e} \left[\Delta n \left(\mu_n + \mu_p \right) + \mu_p \frac{\Delta n \cdot N_T}{\Delta n + N_C \cdot \exp\left(\frac{-E_a}{kT}\right)_T} \right] \quad (6)$$

Figure 3 shows an exemplary photoconductivity measurement at a mc-Si wafer, the fit-curve and the corresponding measured apparent lifetime.

7 By MD-PICTS measurements it is possible to separate 8 different trap levels, but no information about the trap 9 density is provided. By applying both methods a compre-10 hensive study about traps in a sample can be conducted.

The iron detection by lifetime measurements is widely spread in the photovoltaic industry. The FeB pairs are dissociated by irradiating the sample with light and from the deviation between the measured lifetime before and after the dissociation the iron concentration can be determined via the following formula:

$$[Fe] = C_{Fe} \left(\frac{1}{\tau_{after}} - \frac{1}{\tau_{before}} \right).$$
(7)

The accuracy of this determination depends strongly on the use of an accurate calibration factor C_{Fe} , which depends on the injection, doping and trap density. By using the rate equation simulations it is possible to simulate the correct calibration factor for every possible measurement condition [13]. Figure 4 shows an exemplary iron map of a mc-Si wafer with a resolution of 0.5 mm.

26 One difficulty of the iron detection is the separation from 27 other defects, which also react on the irradiation with light, 28 e.g. BO₂. With several annealing steps and repeated 29 irradiation, it is possible to separate FeB and BO₂, since 30 both defects differ in their association time constants and 31 response to elevated temperatures. For the BO₂ determination Eq. (7) is also used, only with the calibration factor for 32 33 BO_2 (C_{BO2}), which is simulated with the according defect 34 parameters [14]. Since especially the carrier cross sections 35 are not known exactly for BO2, only a relative concentration 36 can be measured. Figure 5 displays the maps of the relative

Figure 3 Measured photoconductivity and fit curve versus G_{opt} (a); apparent lifetime versus G_{opt} (b); determined trap parameter: $N_T = 8 \times 10^{14} \text{ cm}^{-3}$, $E_A = 0.387 \text{ eV}$ [13].

Figure 4 (online color at: www.pss-a.com) Exemplary iron map of a SiN_x passivated mc-Si wafer with a resolution of 0.5 mm.

 BO_2 and Fe concentration of an oxide passivated Cz-Si 1 wafer. With these measurements typical differences in the 2 distribution of both defects become obvious. Iron is 3 concentrated at the edge of the sample, whereas BO_2 is 4

Figure 5 (online color at: www.pss-a.com) Relative BO_2 concentration (a) and Fe concentration (b) of an oxide passivated Cz-Si wafer.

Figure 6 (online color at: www.pss-a.com) Exemplary map of the relative chromium concentration of an intentionally doped Cz-wafer.

1 distributed in high concentrated regions in the middle of the 2 wafer. As mentioned above chromium is also an effective 3 recombination center in silicon. Similar to iron it occurs as 4 CrB in boron doped silicon and can be dissociated to Cr; and 5 B by annealing the sample for 30 min at 250 °C. For the chromium determination Eq. (7) is also applied with a 6 calibration factor C_{Cr}. To determine the injection dependent 7 calibration factor C_{Cr} the defect parameters from [15] were 8 used. Note that similar to BO2 defect parameters of CrB and 9 10 Cr_i are not well known so far. That is why only the relative density is determined. An exemplary map of the relative 11 chromium concentration of an intentionally chromium 12 doped Cz-wafer is shown in Fig. 6. 13

By spatially resolved MD-PICTS measurements, it is possible to investigate the defect distribution of different regions of the here presented samples, in order to learn more about the correlation of e.g., BO₂ and thermal donors (TDs). An example of an investigation of TDs in silicon by MD-PICTS is presented in the next section.

20 4.2 Microwave detected photo-induced current 21 transient spectroscopy In contrast to DLTS a direct detection of metal contaminations like iron and chromium in 22 23 silicon with PICTS is so far not successful because these 24 defects are mostly acting as the main recombination centers. 25 But by improving the sensitivity of a microwave detection 26 system by several orders of magnitude the visualization of so 27 far non-detectable defects in electronic grade silicon was achieved. One example is the electrical investigation of the 28 29 well-known TD in electronic grade p-doped silicon [16]. It is not detectable with DLTS because of the position of the 30 Fermi level. The MD-PICTS spectra in Fig. 7 shows two 31 32 defect levels called PTD and PD. Following their evolution during thermal treatment suggests that the PTD peak refers to 33 the TDs in silicon. After annealing for 40 min at 650 °C the 34 emission maximum shifts more than 40 K to lower 35

Figure 7 Spectra of temperature treated electronic grade p-doped silicon [16].

temperatures and is now located at 96 K (previously 133 K 1 in the as-grown state and 140 K in the 450 °C treated sample). 2 This is due to the change in capture cross section from 3 $\sigma = 2 \times 10^{-18} \,\mathrm{cm}^{-2}$ in the as-grown material to 4 $\sigma = 2 \times 10^{-15} \text{ cm}^{-2}$ in the 650 °C treated sample. The 5 activation energy shifts only slightly from $E_A = 0.13$ to 6 $E_{\rm A} = 0.11 \, {\rm eV}$. The change of position is believed to be 7 caused by the transformation of an electrically active TD 8 state into an electrically inactive trap state at temperatures 9 above 600 °C [17]. At higher temperatures above 900 °C the 10 intensity of the defect peak drops rapidly suggesting the 11 dissociation of this defect level. A second defect level with 12 $E_{\rm A} = 0.26 \, {\rm eV}$ in as-grown samples at 242 K can be observed. 13 It is caused by defects in the vicinity of dislocations. 14 Correlations with PL measurements carry this assumption. 15

With MDP and MD-PICTS it is possible to obtain a 16 deeper understanding of the observed sharp transition in the 17 electrical properties of wafers prepared from different parts 18 of a silicon brick [18]. The PTD and PD peaks known from 19 electronic grade p-doped silicon and additional peaks are 20 found by investigations of solar grade silicon samples 21 (Fig. 8). P4 with an activation energy of 0.09 eV is only 22 observable in the bottom part. Because of this low activation 23 energy, the large width of the peak and the position of the 24 corresponding wafer in the silicon brick it may be ascribed to 25 a defect cluster containing nitrogen. P3, whose activation 26 energy cannot be deduced, may have its origin in a cluster of 27 bulk defects, because different surface treatments do not 28 influence the peak. The appearance of all defect peaks differs 29 from the associated brick position. Mapping the samples 30 with MDP shows corresponding changes in lifetime, 31 diffusion length, and photoconductivity. 32

Beside investigations on silicon the new method for 33 contactless electrical defect characterization was applied on 34 gallium arsenide. MD-PICTS spectra show that a high 35 density of the so-called EL5-defect in cell interior regions is 36 responsible for dark areas of smaller lifetimes in MDP 37 mappings [7]. In contrast to other techniques MD-PICTS can 38 detect signals even from thin surface regions $(0.3 \,\mu\text{m})$ of SI 39 GaAs samples and is therefore able to analyze, e.g. 40

200

Figure 8 (online color at: www.pss-a.com) MD-PICTS spectra of solar grade p-doped silicon samples from different brick heights [18].

400

300

temperature / K

500

influences of surface treatments. Figure 9 shows the defect 1 peak of the well-known EL2 defect in samples with different 2 acceptor concentrations [19]. The activation energy varies 3 between 0.55 and 0.73 eV which is in agreement with data 4 5 from other groups [20, 21]. Conspicuous is the occurrence of 6 the defect peak in positive and negative form.

7 The explanation of the negative PICTS peak effect is based on the system of rate equations from Section 3, which 8 9 calculates the carrier concentration of the involved energy levels by taking all participating generation and recombina-10 tion processes as well as trapping and emission events during 11 and after the photo excitation into account. Therefore 12 photoconductivity signals, as they are measured as a result 13 of the photo generation of carriers, can be simulated for 14 different temperatures, if an appropriate mobility is taken 15 16 into account. The consideration of the relevant donor and acceptor concentrations along with the concentration of the 17 18 EL2 defect finally allows for the theoretical reproduction of

Figure 9 (online color at: www.pss-a.com) Detection of the EL2defect in SI GaAs samples with different acceptor concentrations by HT-MD-PICTS. Peak height and sign correlate to the acceptor concentrations [19]. Samples from series D were undoped, acceptor concentration rising from A to C.

experimental results. The latter show a dependence of the 1 height of the EL2-related PICTS peak on the acceptor 2 concentration in the material thus being associated with the 3 Fermi level position. To briefly summarize the theoretical 4 investigations it can be said that the fast recombination and 5 trapping dynamics in the III-V-compound semiconductor 6 GaAs lead to a drop of the electron concentration below the 7 equilibrium value after the excitation is switched off, while 8 the hole concentration shows a positive decay behavior. The 9 amount of electrons that can be trapped and thus the ratio of 10 the concentrations of the two types of excess carriers 11 remaining in the bands $(\Delta n/\Delta p)$ are determined by the initial 12 occupation of the electron trap (EL2) and therefore by the 13 position of the Fermi level. The resulting photoconductivity 14 signal 15

$$\Delta \sigma = \mathbf{e} \cdot (\mu n \Delta n + \mu p \Delta p) \tag{8}$$

16 is consequently controlled by the behavior of the dominant 18 current fraction, thus also considering the large difference of the carrier mobility values for GaAs ($\mu n/\mu p \approx 20$). That 20 means a positive decay behavior of the photoconductivity 21 signal is only observable, if the excess hole concentration 22 remarkably exceeds the excess electron concentration 23 leading to signal

19

24

27

28

29

30

31

32

33

34

35

$$\mu n \Delta n < \mu p \Delta p. \tag{9}$$

This is the case for a Fermi level leaving most of the EL2 defect levels unoccupied [9].

Investigations on indium phosphide show that the defect content changes during annealing processes, which may also have an impact on the distribution of electrical properties. Whereas the defect content of as-grown samples depends on their position in the crystal, an equivalent set of defect levels is prominent in wafer-annealed samples [22]. Figure 10 shows a comparison of Fe-doped SI-InP samples from different crystal positions. They differ in their characteristic

Figure 10 Comparison of MD-PICTS spectra of as-grown Fedoped SI-InP samples from different crystal positions and thus different Fe-concentrations. The samples differ in their characteristic defect levels [22].

1

2

3

31

41

Figure 11 Comparison of MD-PICTS spectra of different SI-6H-SiC samples in different temperature ranges. Samples I-III were grown under same process conditions [8].

defect levels. Additional negative peaks occur in some 1 2 samples for temperatures above 350 K with the amplitude 3 increasing with the crystal length. The occurrence of peaks with different magnitude and sign in this temperature range 4 is Fe-related. The negative peak is assigned to a transition of 5 a hole leaving the Fe^{3+} level toward the valence band [23]. 6 The observation of MD-PICTS signals of both signs in Fe-7 8 doped InP provided the first direct proof of iron acting as a 9 recombination center in InP.

10 Analyses of semi-insulating 6H-SiC grown with a standard process and same process parameters show several 11 differing shallow defect levels occurring in the low 12 temperature range (Fig. 11). Additionally in samples grown 13 under different C/Si-ratios different trap emission dynamics 14 are obtained for higher temperatures, which are supposed to 15 be due to different compensation effects [8]. The activation 16 energies and capture cross sections of the defect peaks 17 18 calculated from the spectra from Fig. 11 lie in the same range 19 known from the literature [24–26]. They are traced back to omnipresent donor- and acceptor-like impurities and intrin-20 sic defects. 21

5 Conclusion The presented experimental results 22 23 show the potential of the new methods MDP and MD-24 PICTS for contactless electrical characterization of defects 25 in several semiconducting materials. Both techniques use the sensitivity benefit of microwave detection leading to a high 26 27 spatial resolution and measurement speed as well as the 28 possibility to recognize defects which were not investigated 29 yet. A cooperation of MDP and MC-PICTS, e.g. mapping of 30 a sample and analysis of several areas differing in reported 31 lifetime with MD-PICTS for defect recognition, leads to insights of the cause of different measurable effects. The 32 introduced simulation tool helps to get a deeper under-33 34 standing of the experimental data. To demonstrate the abilities of both methods, a range of previous results on 35 defect characterization were reviewed in this paper. 36

By determination of a calibration factor depending on 37 injection level, doping and trap density MDP is a useful 38 technique to map the local iron concentration with a high 39

4 With MD-PICTS experiments the visualization of so far 5 non-detectable defects was achieved. One example is the 6 investigation of the TD defect level in electronic grade p-7 doped silicon. This defect cannot be obtained with DLTS 8 because of the position of the Fermi level. Samples from 9 solar grade mc-Si show different defect levels due to their 10 brick height. Comparison between MD-PICTS spectra and 11 lifetime mappings with MDP on gallium arsenide wafers 12 lead to the assumption that lifetime degradation of several 13 areas is caused by the EL5 defect. The EL2 defect was also 14 analyzed. The differentiation between the single ionized 15 state $EL2^+$ from the $EL2^0$ is possible with the help of the 16 signal sign. Investigations on Fe-doped indium phosphide 17 gave the first direct proof that iron acts as recombination 18 center in this material. In SI 6H-SiC the defect levels known 19 from the literature were detected with similar activation 20 energies and capture cross-sections. A deeper understanding 21 about the appearance of PICTS-signals of different signs 22 with simulations basing on a rate equation system has been 23 accomplished. 24

Acknowledgements The support of our research partner 25 with the supply of samples and helpful discussions and also financial 26 benefit is gratefully acknowledged. This work was also financially 27 supported by the European Funds for Regional Development 28 (EFRE) 2007-2013, the European Social Funds (ESF) 2007-2013 29 with the project number 080940489 and the State Saxony. 30

References

- [1] K. Dornich, N. Schüler, D. Mittelstraß, A. Krause, B. Grün-32 dig-Wendrock, K. Niemietz, and J. R. Niklas, Proceedings of 33 the 24th European Photovoltaic Solar Energy Conference, 34 Hamburg, Germany, 2009, pp. 1106–1108. 35
- [2] K. Dornich, T. Hahn, and J. R. Niklas, Mater. Res. Symp. 36 Proc. 864, 549 (2005). 37
- [3] A. A. Istratov, H. Hieslmair, and E. R. Weber, Appl. Phys. A 38 69, 13 (1999). 39 40
- [4] J. Schmidt and K. Bothe, Phys. Rev. B 69, 024107 (2004).
- [5] D. V. Lang, J. Appl. Phys. 45, 3023 (1974).
- [6] O. Yoshie and M. Kamihara, Jpn. J. Appl. Phys. 22, 621 42 (1983). 43
- [7] B. Gründig-Wendrock, M. Jurisch, and J. R. Niklas, Mater. 44 Sci. Eng., B 91-92, 371 (2002). 45
- [8] S. Hahn, F. C. Beyer, A. Gällström, P. Carlsson, A. Henry, B. 46 Magnusson, J. R. Niklas, and E. Janzén, Mater. Sci. Forum 47 **600-603**, 405 (2009). 48
- [9] S. Schmerler, T. Hahn, S. Hahn, J. R. Niklas, and B. Gründig-49 Wendrock, J. Mater. Sci. Mater. Electron. 19, 328 (2008). 50
- [10] J. M. Dorkel and J. P. Leturcq, Solid State Electron. 24, 821 51 52 (1981).
- [11] N. Schüler, T. Hahn, S. Schmerler, S. Hahn, K. Dornich, and 53 J. R. Niklas, J. Appl. Phys. 107, 064901 (2010). 54
- [12] J. A. Hornbeck and J. R. Haynes, Phys. Rev. 97, 311 (1955). 55
- [13] N. Schüler, T. Hahn, K. Dornich, and J. R. Niklas, Solid State 56 Phenomen. 156-158, 241, (2010). 57

- [14] K. Bothe, R. Sinton, and J. Schmidt, Prog. Photovolt. Res.
 Appl. 13, 287 (2005).
- [15] H. Habenicht, M. C. Schubert, and W. Warta, J. Appl. Phys.
 108, 034909 (2010).
- [16] K. Dornich, K. Niemietz, M. Wagner, and J. R. Niklas, Mater.
 Sci. Semicond. Proc. 9, 241 (2006).
- [17] A. Borghesi, B. Pivac, A. Sassalla, and A. Stella, Appl. Phys.
 Rev. 9, 4169 (1995).
- [18] K. Niemietz, K. Dornich, M. Ghosh, A. Müller, and
 J. R. Niklas, Proceedings of the 21st European Photovoltaic
 Solar Energy Conference, Dresden, Germany, 2006, pp. 361–
 364.
- [19] B. Gründig-Wendrock, K. Dornich, T. Hahn, U. Kretzner,
 and J. R. Niklas, Eur. J. Appl. Phys. 27(1–3), 363 (2004).

- [20] K. Mojeiko-Kotlinska, H. Scibior, I. Brylowska, and M. Subotowicz, Phys. Status Solidi A 138, 217 (1993).
- [21] S.-K. Min, E. K. Kim, and H. Y. Cho, J. Appl. Phys. **63**, 4422 (1988).
- [22] S. Hahn, K. Dornich, T. Hahn, A. Köhler, and J. R. Niklas, Mater. Res. Soc. Symp. Proc. 9, 355 (2005).
- [23] S. Hahn, K. Dornich, T. Hahn, B. Gründig-Wendrock, B. Schwesig, G. Müller, and J. R. Niklas, Proceedings of the MRS Spring Meeting, San Francisco, USA, 2005, pp. 573–578.
- [24] A. A. Lebedev, Semiconductors 33, 107 (1997).
 [25] C. G. Hemmingsson, N. T. Son, and E. Janzén, Appl. Phys. Lett. 74, 839 (1999).
- [26] W. Suttrop, G. Pensel, and P. Lanig, Appl. Phys. A 51, 231 (1990).

13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Manuscript No.

Author/Title/Issue No.

2011 WIEY -BLACKWELL WIEWCH @bH &Co. &A physica status solidi Rotherstrasse 21 10245 Berlin Germany TEL +49 (0) 30-47 03 13 31 FAX +49 (0) 30-47 03 13 34 E-MAIL pssa.proofs@wiley-vch.de

Required Fields may be filled in using Acrobat Reader

Please correct your galley proofs and return them within 4 days together with the completed reprint order form. The editors reserve the right to publish your article with editors' corrections if your proofs do not arrive in time.

After having received your corrections, your paper will be published online up to several weeks ahead of the print edition in the EarlyView service of Wiley Online Library (wileyonlinelibrary.com).

Please keep in mind that reading proofs is your responsibility. Corrections should therefore be clear. The use of standard proof correction marks is recommended. Corrections listed in an electronic file should be sorted by line numbers.

LaTeX and Word files are sometimes slightly modified by the production department to follow general presentation rules of the journal.

Note that the quality of the halftone figures is not as high as the final version that will appear in the issue.

Check the enclosed galley proofs very carefully, paying particular attention to the formulas (including line breakings introduced in production), figures, numerical values, tabulated data and layout of the pages.

A black box (**I**) or a question at the end of the paper (after the references) signals unclear or missing information that specifically requires **your attention.** Note that the author is liable for damages arising from incorrect statements, including misprints.

The main aim of proofreading is to correct errors that may have occurred during the production process, **and not to modify the content of the paper**. Corrections that may lead to a change in the page layout should be avoided. Note that sending back a corrected **manuscript** file **is of no use**.

If your paper contains **color figures**, please fill in the Color Print Authorization and note the further information given on the following pages. Clearly mark desired **color print figures** in your proof corrections.

Return the corrected proofs within 4 days by e-mail.

Please do not send your corrections to the typesetter but to the Editorial Office:

E-MAIL: pssa.proofs@wiley-vch.de

Please limit corrections to errors in the text; cost incurred for any further changes or additions will be charged to the author, unless such changes have been agreed upon by the editor.

Full color reprints, PDF files, Issues, Color Print, and Cover Posters may be ordered by filling out the accompanying form.

Contact the Editorial Office for **special offers** such as

- Personalized and customized reprints (e.g. with special cover, selected or all your articles published in Wiley-VCH journals)
- Cover/frontispiece publications and posters (standard or customized)
- Promotional packages accompanying your publication

Visit the **MaterialsViews.com Online Store** for a wide selection of posters, logos, prints and souvenirs from our top physics and materials science journals at www.cafepress.com/materialsviews

Order Form

Manuscript No.

Author/Title/Issue No.

2011 WILEY-BLACKWELL WILEY-VCH GmbH & Co. KGaA physica status solidi Rotherstrasse 21 0245 Erlin Ermany TEL Q0 04338 FAX Q0 04338 EMALpssa.proofs@wiley-vch.de WILEY Publishers Since 1807

Please complete this form and return it by FAX or e-mail.

Required Fields may be filled in using Acrobat Reader

Reprints/Issues/PDF Files/Posters

Whole issues, reprints and PDF files (300 dpi) for an unlimited number of printouts are available at the rates given on the third page. Reprints and PDF files can be ordered before *and after* publication of an article. All reprints will be delivered in full color, regardless of black/white printing in the journal.

Reprints

Please send me and bill me for

full color reprints with color cover

full color reprints with color cover **and** customized color sheet

Issues

Please send me and bill me for

entire issues

PDF

Please send me and bill me for

□ a PDF file (300 dpi) for an unlimited number of printouts with customized cover sheet.

The PDF file will be sent to your e-mail address.

Send PDF file to:

Please note that posting of the final published version on the open internet is not permitted. For author rights and re-use options, see the Copyright Transfer Agreement at http://www.wiley.com/go/ctavchglobal.

Cover Posters

Posters are available of all the published covers in two sizes (see attached price list). **Please send me and bill me for**

A2 (42 \times 60 cm/17 \times 24in) posters A1 (60 \times 84 cm/24 \times 33in) posters

Mail reprints and/or issues and/or posters to (no P.O. Boxes):

Color print authorization

Please bill me for

- color print figures (total number of color figures)
- □ YES, please print Figs. No. in color.
- □ NO, please print all color figures in black/white.

VAT number:

Tax-free charging can only be processed with the **VAT** number of the institute/company. To prevent delays, please provide us with the VAT number with this order.

Purchase Order No.:

Terms of payment: Please send an invoid Please charge my credit VISA	ce Cheque is enclos it card	Expiry date
Card no.		
Card Verification Code		
Date, Signature		

Send bill to:

Date

Subscriptions

For ordering information, claims and any enquiry concerning your journal subscription please go to www.wileycustomerhelp.com or contact your nearest office.

Americas: e-mail: cs-journals@wiley.com; Tel: +1 781 388 8598 or +1 800 835 6770 (toll free in the USA & Canada)

Europe, Middle East and Africa: e-mail: cs-journals@wiley.com; Tel: +44 (0) 1865 778315.

Asia Pacific: e-mail: cs-journals@wiley.com; Tel: +65 6511 8000. Japan: For Japanese speaking support, e-mail: cs-japan@wiley.com; Tel: +65 6511 8010 or Tel (toll-free): 005 316 50 480.

Price List for Reprints 2011 - pss (a)

The prices listed below are valid only for orders received in the course of 2011. Minimum order is 50 copies. **Reprints can be ordered before** *and after* **publication of an article. All reprints are delivered with color cover and color figures**. If more than 500 copies are ordered, special prices are available upon request.

Single issues are available to authors at a reduced price.

The prices include mailing and handling charges. All prices are subject to local VAT/sales tax.

Reprints with color cover	Price for orders of (in Euro)						
Size (pages)	50 copies	100 copies	150 copies	200 copies	300 copies	500 copies*	
1-4 330,-		385,—	425,—	445,—	548,—	752,—	
5-8	470,—	556,—	608,—	636,—	784,—	1077,—	
9–12	610,—	717,—	786,—	824,—	1016,—	1396,—	
13–16	744,—	874,—	958,—	1004,—	1237,—	1701,—	
17–20	885,—	1040,—	1138,—	1196,—	1489,—	2022,—	
for every additional 4 pages	140,—	164,—	175,—	188,—	231,—	315,—	
for additional customized colored cover sheet	190,—	340,—	440,—	650,—	840,—	990, —	

PDF file (300 dpi, unlimited number of printouts, customized cover sheet) € 330.00

Issues		€ 48.00 per copy for up to 10 copies.*		up to 10 copies.*
Cover Posters •	A2 (42×	: 60 cm/17 × 24in)	€	49.00
	A1 (60×	: 84 cm/24 × 33in)	€	6 69.00

*Prices for more copies available on request.

Special offer: If you order 100 or more reprints you will receive a pdf file (300 dpi, unlimited number of printouts, color figures) and an issue for free.

Color figures

If your paper contains **color figures**, please notice that, generally, these figures will appear in color in the online PDF version and all reprints of your article at no cost. This will be indicated by a note "(online color at: www.pss-a.com)" in the caption. The print version of the figures in the journal hardcopy will be black/white unless the author explicitly requests a <u>color print publication</u> and contributes to the <u>additional printing costs</u>.

	Approximate color print figure charges	
First figure	€ 495.00	
Each additional figure	€ 395.00 Special prices for more color print figures on request	

If you wish color figures in print, please answer the **color print authorization** questions on the second page of our Order Form and clearly mark the desired color print figures in your proof corrections.

Information regarding VAT:

Please note that for German sales tax purposes the charge for *color print* is considered a service and therefore is subject to German sales tax. For **institutional** customers in other countries the tax will be waived, i.e. the Recipient of Service is liable for VAT. Members of the EU will have to present a VAT identification number. Customers in other countries may also be asked to provide according tax identification information.