Choose another division
Electrical semiconductor characterization
Luminescence dating, research, dosimetry and more
Contamination monitor, beta-aerosol monitor, dose rate meter and more
for ultra-fast crystal orientation, crystal alignment in production, quality control, rocking curve measurements, material...
state-of-the-art XRD system for automatic single crystal ingot orientation, tilting and alignment for grinding
Wafer sorting, crystal orientation, resistivity, optical notch and flat determination
Flexible diffractometer for ultra-fast Omega Scan orientation determination
Smart diffractometer for ultra-fast Omega-scan of small samples.
Robust XRD equipment for fully automated in-line testing & alignment
for blanks, wafers & bars (AT, SC, TF, etc.)
three generations of X-ray engineers
in industrial production, R&D and more
discover the most convenient way of measuring orientation of single crystals
Mono- and Multi-crystalline wafer lifetime measurement device
State of the art system for topographic electrical characterization of multicrystalline bricks in fabs with high throughput....
Production integrated high speed wafer mapping of carrier lifetime. Single wafer topograms in less than one second a wafer.
Low cost table top lifetime measurement system for characterization of a variety of different silicon samples at different...
Mono- and Multi-crystalline wafer and brick lifetime measurement device
Flexible OEM unit for lifetime measurements at a variety of different samples ranging from mono- to multicrystalline silicon...
for contactless and temperature dependent lifetime and LBIC measurements
The minority carrier life time is sensitive for all kinds of electrically active defects in semiconductors and is therefore...
MDP is an advanced technology with a so far unsurpassed combination of sensitivity, speed and resolution for fab and lab...
High sensitivity, high resolution surface photovoltage (SPV) measurement instrument
High sensitivity, high resolution surface photovoltage spectroscopy (SPS) instrument with a variable energy excitation source...
for quality control of bifacial PERC/PERC+ solar cells and more
portable in field PID tester for solar modules
user friendly and advanced operating software
The PIDcon devices are designed to investigate the PID susceptibility for production monitoring of solar cells as well as tests...
Learn more about the reasons for PID and the how the susceptibility of solar cells, mini modules and encapsulation materials can...
Our quality management system is an integrated process-oriented system with ISO 9001 certification.
Since 2010 the potential induced degradation is known to be one of the main causes for module failures. With the new technology developed by the Fraunhofer CSP and now commercially available as the benchtop tool PIDcon by Freiberg Instruments solar cells and mini modules can be tested for their PID susceptibility.
Learn more about the reasons for PID and how the susceptibility of solar cells, mini modules and encapsulation materials can be investigated.
Potential induced degradation (PID) is one of the most dangerous degradation phenomena observed in c-Si modules. Great progress has been achieved in the understanding of the basic mechanism of PID of the shunting type (PID-s).
A comparison with other widely used methods for PID testing demonstrates that the PIDcon has great advantages.
The PID susceptibility depends on several parameters as the stress factors temperature and voltage as well as the encapsulation materials and the SiNx layer of the solar cell itself.
In order to establish a criterion for the pass or fail of the PID test the conductance test and the power loss are used.
User friendly and advanced operating software
µPCD/MDP (QSS)
PID
X-ray diffraction
Projects
Company
This Website uses cookies Our website uses cookies and the web analytics tool Google Analytics according to our privacy policy. By continuing to browse these pages, you agree. If you do not want to collect data from Google Analytics, you can disable this here