For silicon SRH is often the dominant recombination mechanism. The minority carrier lifetime in the bulk depends accordingly on the number of defects present and on their recombination properties. In silicon the lifetime can be as high as 1ms, where as in a direct semiconductor as GaAs, where the intrinsic recombination is dominant, the lifetime is only in the range of ns...µs. Besides the defect properties the minority carrier lifetime is dependent on the injection level (excess carrier concentration) and the doping concentration. Figure 1 and 2 display this dependencies for all different lifetimes.
Besides that the measured effective lifetime is dependent on the measuring method. For more details read:
[1] S. Rein, Lifetime Spectroscopy - A Method of Defect Characterization in Silicon for Photovoltaic Applications, Vol. 85 (Springer, Berlin Heidelberg, 2005)
[2] D. K. Schroder, Semiconductor Material and Device Characterization, 2 ed. (John Wiley & Sons, New York, 1998)